

Math-Based Decisions in Air Traffic Control

Student Workbook A

- Introduction to Real Air Traffic Control
 - Units
 - Sector Display
 - Sector Information
 - Spacing Information

Investigator: _____

An Airspace Systems Program Product

Understand Sector Information

Investigator:

Understand Units

Distance:

Travel on land is measured in Statute Miles - commonly called "miles".

Travel in the air and on the sea is measured in Nautical Miles (Nmiles). A nautical mile is a little *longer* than a statute mile.

1 nautical mile = 1.15 statute miles

A Nautical Mile is a little

longer than a statute mile.

Speed on land is measured in Miles per Hour (mph).

Speed in the air and on the sea is measured in Nautical Miles per Hour - commonly called "knots" (Kts).

1 "knot" = 1 nautical mile per hour

Just as a Nautical Mile is a little *longer* than a Statute Mile, 1 Knot (nautical mile per hour) is a little *faster* than 1 mile per hour.

Understand the Sector Display

A **Sector** is the air space above a specific geographical section of the country. Each sector has 2 air traffic controllers. They are responsible for the safe and efficient flight of all aircraft in that sector.

A sector is composed of many interconnected Routes. Routes are invisible pathways in the sky.

When you look at an air traffic problem display, you will see:

- Lines to show the routes
- Numbers at each 5 nautical mile distance
- Tick marks at each 1 nautical mile distance

Continue to Next Page

Investigator:	
5)	·

Understand Sector Information (Continued)

- Sector 33 is a real sector in northern California. But we've used different distances.
- Sector 33 controllers merge traffic onto a single route at MOD.

It is important that you understand the distances between intersections.

$\{1\}$	Circle the intersections at MOD and MINAH.				Where is MOD?
${2}$	What is the direct distance from:	MINAH	TPH	LIDAT	
	To MOD?	Nmi	Nmi	Nmi	
	To OAL?	Nmi	Nmi	Nmi	7
(I)	How far is it from MINAL	H to OAL to MOD?			nautical miles
£4}	How far is it from MINAH to MOD directly?				nautical miles
(5)	How much shorter is it to rather than by way of O	nautical miles			
	How much further is it to go from LIDAT to MOD by way of OAL rather than directly?				nautical miles

Continue to Next Page

Investigator:

Understand Sector Information (Continued)

• **Information for each plane**, including its position, is shown on the sector display.

£	Circle the diamond for the Delta Airlines flight of	n the sector	display.
£ 8 3	What is the speed of the Delta Airlines flight?		knots

A **Flight Plan** is a plane's route of travel from intersection to intersection, including speed (knots) and altitude. In our case, the altitude will be the same for all planes.

£(9)	Locate	flight AAL12 ar	nd write the ir	itersections (in or	der) for its flight p	olan to San F	rancisco (SF	O):
J	To:		Then to:		Then to:			
£ 10 }	What is	the length of th	e flight route	of AAL12 from its	current position	to MOD?		Nmiles
£11 }	What is	the length of th	e flight route	of UAL23 from its	s current position	to MOD?		Nmiles

Understand Airplane Spacing Requirements

Investigator:

The **Objective** of air traffic control is to *safely* and *efficiently* move planes to their destinations.

Safety - Minimum Separation

To be **safe**, planes must **always** be kept far enough apart that collisions and near-misses **NEVER** happen.

 The Federal Aviation Administration has established the least distance allowed between planes. This is called the Minimum Separation.

You will use

Minimum Separation = 2 nautical miles

- On air traffic control displays, this minimum separation is shown by a "safety circle" around the plane symbol. The circle radius is 1 nautical mile.
- When two circles just touch, the distance between the planes is 1 nautical mile + 1 nautical mile = 2 nautical miles, the minimum separation.

Efficiency - Ideal Spacing

- At SFO, planes arrive from Sector 33 and from other sectors.
 So, at MOD the Sector 33 controllers must leave more than 2 nautical miles to let planes from other sectors merge after MOD.
- This greater spacing is referred to as Ideal Spacing.

Ideal Spacing at MOD = 3 nautical miles

You must aim for Ideal Spacing at MOD.
 Everywhere else you need at least Minimum Separation.

Continue to Next Page

Investigator:	
9	

Understand Airplane Spacing Requirements (Continued)

UAL74 is **following** AAL12 to SFO. On the route, draw a diamond to show UAL74 at the Minimum Separation.

Draw a "safety circle" around the diamond for UAL74.

DAL88 is **ahead** of AAL12 to SFO. On the route, draw a diamond and a safety circle to show DAL88 at the <u>Ideal</u> Spacing.

7 In each diagram, check all boxes that are true.

